Saturday, May 14, 2011

MTH202 Mid Term Past solved paper


MIDTERM  EXAMINATION
Fall 2009
MTH202- Discrete Mathematics 


Question No: 1      ( Marks: 1 ) - Please choose one
 

The inverse of given relation  R = {(1,1),(1,2),(1,4),(3,4),(4,1)} is

       ► {(1,1),(2,1),(4,1),(2,3)}

       ► {(1,1),(1,2),(4,1),( 4,3),(1,4)}

       ► {(1,1),(2,1),(4,1),(4,3),(1,4)}



Question No: 2      ( Marks: 1 ) - Please choose one
 

Symmetric and antisymmetric are

       ► Negative of each other

       ► Both are same

       ► Not  negative of each other







Question No: 3      ( Marks: 1 ) - Please choose one
 

Let A = {a, b, c} and
R = {(a, c), (b, b), (c, a)} be a relation on A. Is R


       ► Transitive

       ► Reflexive

       ► Symmetric

       ► Transitive and Reflexive



Question No: 4      ( Marks: 1 ) - Please choose one
 

Let A= {1, 2, 3, 4} and R = {(1, 1), (2, 2), (3, 3),(4,4)} then


       ► R is symmetric.

       ► R is anti symmetric.

       ► R is transitive.

       ► R is reflexive.

       ► All given options are true



Question No: 5      ( Marks: 1 ) - Please choose one
 The contrapositive of the conditional statement p q is


       ► ~p ~q


       ► q p


       ► ~q ~p


       ► None of these


Question No: 6      ( Marks: 1 ) - Please choose one
 

In Boolean addition 1+1=


       ►  2

       ► 1

       ►  0



Question No: 7      ( Marks: 1 ) - Please choose one
 
The negation of “Today is Friday” is


       ► Today is Saturday


       ► Today is not Friday  

       ► Today is Thursday




Question No: 8      ( Marks: 1 ) - Please choose one
 



The same element can never appear twice in a set.


       ► True

       ► False


Question No: 9      ( Marks: 1 ) - Please choose one
 

If f(x)=2x+1,  then fg(x)=

       ►

       ►

       ►



Question No: 10      ( Marks: 1 ) - Please choose one
 
The statement   p q ~p q ~(p ~q)
describes

       ► Commutative Law

       ► Implication Laws


       ► Exportation Law


       ► Equivalence




Question No: 11      ( Marks: 1 ) - Please choose one
 

If two sets are not equal, then one must be a subset of the other

       ► True

       ► False



Question No: 12      ( Marks: 1 ) - Please choose one
 

If  f  and g are two one-to-one functions then their composition that is gof is


       ► Not one-to-one

       ► Onto

       One-to-one      

       ► Onto and one-to-one




Question No: 13      ( Marks: 1 ) - Please choose one
 

If a set contains exactly m distinct elements where m denotes some non negative integer then the set is .


       ► Finite


       ► Infinite


       ► None of these




Question No: 14      ( Marks: 1 ) - Please choose one
 

If f(4) = 1 and g(1) = 4 then fog(1) =


       ► 3

       ► 1

       ► 4



Question No: 15      ( Marks: 1 ) - Please choose one
 
If () = A, then () = B

       ► True

       ► False

       ► Cannot be determined




Question No: 16      ( Marks: 1 ) - Please choose one
 

The total number of elements in a set is called


       ►  Strength

       ► Cardinality

       ►  Finite
                                                           


Question No: 17      ( Marks: 1 ) - Please choose one
 

If f(x) = x and g(x)=-2x then (f+g)x =


       ► 3x

       ►

       ► –x



Question No: 18      ( Marks: 1 ) - Please choose one
 
Associative law of Intersection for three sets


       ► A  (B  C) = (A  B)  C


       ► A  (B  C) = (A  B)  C


       ► A (B C) = (A B)   (A B)


       ► None of these




Question No: 19      ( Marks: 1 ) - Please choose one
 

Which term of the  sequence  4,1,-2,… is -77

       ► 26

       ► 27

       ► 28



Question No: 20      ( Marks: 1 ) - Please choose one
 

If a set A has 5 elements then power set of A. P(S) contains elements. Which  are?

       ►

       ►

       ►

       ►



Question No: 21      ( Marks: 1 ) - Please choose one
 

 A collection of rules indicating how to form new set objects from those already known to be in the set is called


       ► Base

       ► Restriction

       ► Recursion



Question No: 22      ( Marks: 1 ) - Please choose one
 

 is


       ► Arithmetic series
Arithmetic series


       ► Geometric series


       ► Arithmetic sequence


       ► Geometric sequence 





Question No: 23      ( Marks: 1 ) - Please choose one
 

       ► 4

       ► 3

       ► -2





Question No: 24      ( Marks: 1 ) - Please choose one
 

The product of the positive integers from 1 to n is called

       ► Multiplication


       ► n factorial


       ► Geometric sequence




Question No: 25      ( Marks: 3 )
 

Consider the geometric progression  5/7, 5/49, 5/343,  …
·        Identify r
·        Find the nth term of this progression
·        If the above progression is to be added up to infinite terms then what could be the sum?
Answer:-
                       

nth term=?
Sum=?
            As  
 So, formula is:-
           
Question No: 26      ( Marks: 5 )
 

Determine whether the following statement is tautology or not (use truth table)
                                         

p
q
~p
~q
~q
1
1
0
0
1
1
0
1
0
0
1
1
1
0
0
1
1
0
0
0
1
0
0
1
1
1
1
1
Hence, it is not a tautology as there are two  false.

Question No: 27      ( Marks: 10 )
 

Write an input/output table for the circuit:
 
             
Input signals are:

X = 1
Y = 0
Z = 0
X
Y
Z
X^Y
(X^Y) Z
~[(X^Y) Z]
1
0
0
0
0
1

__________________________________________________________

No comments:

Post a Comment

Contact Form

Name

Email *

Message *